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Abstract
Unmanned Aerial Systems (UAS) are quickly integrating into the National Air Space. Doing so safely is a pressing concern,
as the US alone has over 1.5 million registered small (under 55 pounds) UAS and the FAA projects further rapid expansion.
This drives the need for an intelligent, automated system for UAS Traffic Management (UTM). Even more than for manned
aircraft, UTM must integrate runtime checks to ensure system safety, at the very least to make up for the lack of humans
on-board to employ the common-sense safety checks ingrained into the culture of human aviation. We overview a candidate
automated, intelligent UTM system and propose multiple integration points for runtime verification to ensure that each part
of the UTM adheres to safety requirements during operation. We write, validate, and present patterns for formal requirements
across multiple subsystems of this UTM framework. We incorporate specifications that use set aggregation as a way of raising
their abstraction from single sensors to sets of sensors, which allow us to monitor for system requirement violations with
smaller specifications. After encoding our requirements as flight-certifiable runtime observers in the R2U2 RV engine, we
execute them in simulation across multiple real-life test flights supplemented with simulated data to cover additional cases
that did not occur in flight. Lessons learned accompany an analysis of the efficacy and performance of RV integration into
the UTM framework.

Keywords UAS · UTM · Runtime verification · R2U2

1 Introduction

TheFederalAviationAdministration (FAA) forecastsUnma-
nned Aerial System (UAS) numbers to continue to “expand
rapidly” over the next 20 years with over 90% of the growth
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from consumer-grade or professional-grade (non -model)
UASused for commercial or research purposes [9]. Given the
considerable traffic this will generate and the pressing con-
cern for safe integration into the National Air Space (NAS),
additional traffic management is required on top of current
safety regulations [10,18,23]. A recent candidate for an intel-
ligent, automated UAS Traffic Management (UTM) system
addresses these concerns [34].

One important consideration in such an automated sys-
tem is how, and where, to integrate checks during system
operation that continuously monitor for violations of system
safety requirements, e.g., due to unexpected environmental
conditions or other scenarios that could not be predicted and
tested for during system design. This is especially critical
given the automated nature of the systems involved: pilots
and human ground controllers make numerous decisions in
the control of commercial aircraft that serve as a foundation
for their traffic management systems but are missing from
UTM. For example, pilots regularly identify and dismiss
off-nominal sensor readings and ground controllers operate
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under unstated assumptions, such as that the flight plans of
two aircraft should never contain unsafe overlaps.

Runtime Verification (RV) provides checks that cyber-
physical systems adhere to their safety requirements during
operation. However, much of the research into RV has
focused on increasing expressivity of monitored properties
and operational reach of RV engines. One example of this
is incorporating first-order logic into a variety of temporal
logic languages [4,8,11,14]. In any of these implementa-
tions, expressiveness comes with a tradeoff in complexity
[5–7,11,13]. The on-board resources, overhead, operational
delays, and intrusive system instrumentation required to run
these tools are incompatible with flight certification [32].
In response, the Realizable, Responsive, Unobtrusive Unit
(R2U2)wasdesigned tomonitor sufficiently expressive prop-
erties in real time, under hard resource constraints, with
low-to-no overhead, andwithout system instrumentation that
would violate flight certification [24]. Only three RV tools
are flight-certifiable: R2U2, Lola [30], and Co-Pilot [22];
R2U2’s flexible architecture was the easiest to adapt to our
UTM system.

We examine the candidate UTM system [34], overview-
ing its design, implementation, and initial tests, e.g., with
University of Iowa’s (U of I’s) Operational Performance Lab-
oratory’s (OPL’s) Vapor 55 UAS flying over a small, nearby
airspace. We map out three subsystems where RV could be
embedded within this UTM framework: on-board the Vapor
55, on-board eachGround Control Station (GCS), andwithin
the UTM’s cloud-based framework. However, the big-gest
bottleneck to the successful deployment of formal methods,
like RV, is specification of the requirements under verifi-
cation [26]. Building upon the runtime specification pattern
categories of [26], we detail patterns for formal requirements
specification across these subsystems and write, debug, and
validate a covering set of temporal logic specifications.

Additionally, we detail a new syntactic extension for
Mission-timeLinear Temporal Logic thatwe callMLTLwith
set aggregation. In essence, we incorporate new syntax that
allows subsets of atomic propositions to be grouped into a
single atomic proposition for the set. Using these operators
raises the level of abstraction of a specification from an indi-
vidual signal to a set of signals, e.g., sets of UAS or flight
plans, enabling easier validation for certain common specifi-
cations by reducing specification length and complexity, and
enabling the underlying RV engine to employ optimizations
when creating an observer for the specification. For example,
if the intention of a specification is to trigger a “mode con-
fusion” alert if a UAS ever has two flight modes enabled at
the same time, we can use set aggregation syntax to signal to
the RV engine that we do not care which twomembers of the
set of modes are enabled, allowing for automated implemen-
tation optimizations taking advantage of lossy information
strategies.

Using R2U2 to create runtime observers from this spec-
ification set, we deploy in simulation real-time RV over a
set of real-life flight tests, expanding our data set to include
realistic scenarios that were not able to be flown in real life.
We examine the outputs from R2U2 and provide a roadmap
for utilizing this data to robustify the UTM framework. Our
case study details the process of RV integration for future
adopters of systems like UTM.

Our contributions are as follows: (1) patterns useful for
RV specifications across a real distributed UTM implemen-
tation; (2) introduce new syntax designating set aggregation
in MLTL formulas that maintains context to be used in mon-
itor optimizations; (3) an open set of RV benchmarks from
real-world UAS/GCS telemetry data; (4) an extensive exper-
imental evaluation (124 specifications) of a distributed RV
implementation in real-time; and (5) lessons learned from
distributed RV specifications validation and refinement for a
UTM system.

The remainder of this paper is organized as follows. Sec-
tion 2 gives background information on MLTL and R2U2.
Section 3 overviews the candidate UTM framework. Our
formal specifications fill Sect. 4, including specifications
specific to the on-board UAS, the GCS, and the UTM’s
cloud-based framework. To inform future practitioners, we
detail their organization, discuss coveragemetrics, and exem-
plify each specification pattern we found useful in our study.
We also formally present MLTL with set aggregation syntax
and address the critical topic of specification validation and
debugging. Section 5 describes our test scenario, evaluates
the efficiency of MLTL with set aggregation, and graphs the
outputs fromR2U2 for specifications fromsix of our patterns.
Section 6 concludes with lessons learned and next steps for
RV integration into the future UTM system.

2 Preliminaries

2.1 Mission-time linear temporal logic

For all our specifications, our chosen language is Mission-
time Linear Temporal Logic (MLTL) [17,24]. MLTL incor-
porates a closed interval over naturals I = [a, b](0 ≤ a ≤ b
are natural numbers) time bounds over a set of bounded
natural numbers on each temporal operator. Unlike Metric
Temporal Logic (MTL) [2], open or half-open intervals over
the natural domain are not necessary, as open and half-open
intervals can be reduced to an equivalent closed bounded
interval e.g., (1, 2) = ∅, (1, 3) = [2, 2], (1, 3] = [2, 3], etc
[17].

Definition 1 (MLTLSyntax [17,24]) The syntax of anMLTL
formulaφ over a set of atomic propositionsAP is recursively
defined as:
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φ::=true | false | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 |
�Iφ | ♦Iφ | φ1UIφ2 | φ1RIφ2

where p ∈ AP is a Boolean atom (0/1), φ1 and φ2 areMLTL
formulas, and I is a closed-bound interval [lb, ub], where
lb ≤ ub.

For any two MLTL formulas φ1 and φ2, φ1 ≡ φ2 if
and only if they are semantically equivalent. Since MLTL is
derived from linear temporal logic (LTL),many of the seman-
tics are the same: false ≡ ¬true, φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2),
¬(φ1UIφ2) ≡ (¬φ1RI¬φ2) and ¬♦Iφ ≡ �I¬φ. MLTL
keeps the standard operator equivalences from LTL as well,
including (♦Iφ) ≡ (trueUIφ), (�Iφ) ≡ (falseRIφ), and
(φ1RIφ2) ≡ (¬(¬φ1UI¬φ2)). The only notable difference
is thatMLTLdiscards LTL’s next (X ) operator, as it is seman-
tically equivalent to �[1,1]φ [17]. A position π [i] in a trace
π , where (i ≥ 0) is an assignment over 2AP ; |π | represents
the length of π .

Definition 2 (MLTL Semantics [17,24]) The satisfaction of
an MLTL formula φ, over a set of propositions AP , by
a computation/trace π starting from position i (denoted as
π, i |	 φ) is recursively defined as:

– π, i |	 p iff p ∈ π [i],
– π, i |	 ¬φ iff π, i 
|	 φ,
– π, i |	 φ1 ∧ φ2 iff π, i |	 φ1 and π, i |	 φ2,
– π, i |	 φ1U[lb,ub]φ2 iff |π | > lb and, there exists i ∈

[lb, ub], i < |π | such that π, i |	 φ2 and for every j ∈
[lb, ub], j < i it holds that π, j |	 φ1.

2.2 Realizable responsive unobtrusive unit (R2U2)

Our R2U2 instrumentation uses two of that tool’s main
architectural layers: (1) signal processing and (2) tempo-
ral logic monitors. R2U2 has implementations in hardware
(FPGAs), C++, and C; we choose the latter for embedding
in the UTM. R2U2’s architecture details appear in a tool
overview [27], with additional details from past case studies
in [12,16,19,24,28,31].

R2U2 reads relevant sensor readings off the main sys-
tem bus, then passes them through lightweight, real-time
atomic checkers that filter and discretize the sensor read-
ings. Checks like “altitude> 1,000 ft” transform signals into
Boolean atomics, i.e., true or false, that populate the atomic
propositions in temporal logic formulas. EachMLTL formula
encodes directly into anobserver embeddedon the target plat-
form. The hierarchical tree of inputs, filters, atomic checkers,
and temporal logic formulas comprise an R2U2 specification
observation tree, an example of which can be seen in Sect.
5. Redundant branches of the tree can be combined through
a pre-flight optimization step for efficiency and to reduce
encoding size.

R2U2 encodes specifications in a variety of tempo-
ral logical syntaxes (e.g., LTL, MTL, MLTL) which are
then compiled and constructed into one or more observa-
tion trees, which allow for re-use of similar sub-formulas
within separate specifications. For example, suppose R2U2
is implemented on a fixed-wing UAS and has two separate
specifications: (1) the UAS’s landing gear will be stowed
when it is above 1,000 ft, and (2) the UAS’s speed will be
within 300mph to 400mphwhen above 1,000 ft. Since both of
these specifications require the altimeter reading to exceed
1,000 ft, a single Boolean operator can be passed to both
temporal logic observers.

3 UTM system definition

In parallel with NASA’s third UTM Technical Capability
Level [20], a hybrid university-industrial team proposed an
intelligent, centralized UTM for low-altitude urban environ-
ments to coordinate UAS traffic in a safe and efficient way
[34]. A high-level diagram of the proposed UTM system
appears in Fig. 1.

Ground Control Stations (GCS) connect to the UTM
Cloud Server and upload their proposed flight plan for
approval. The UTM Cloud server performs pre-flight plan
conflict detection using a dynamic geofencing algorithm
[36]. The UTM then notifies the GCS if the flight plan is
rejected or approved. If rejected, the GCS should submit a
new flight plan until one is approved. When approved, the
GCS streams the UAS’s telemetry data to the server, which
then performs an en route conflict prediction. If an en route
conflict is predicted, the server will alert all GCS involved in
the conflict, so that they may have enough time to submit a
new flight plan and perform an avoidance maneuver.

There are many challenges to overcome before such
a UTM would be incorporated into the NAS [3,25]. For
example, an ongoing research question is how to handle
uncooperative and hostile UAS in the UTM’s airspace. One
assumption of this UTM is that all UAS are non-hostile, i.e.,
no UAS is purposefully flying an unapproved flight plan.
However, this UTM was designed to receive telemetry data
from anyone who connects to it, regardless of flight plan
status. While the details of how to maintain communication
with both cooperative and uncooperative UAS are still ongo-
ing research [33], RV can be used within this UTM to alert
the operator to the presence of uncooperative UAS.

Another ongoing research question for UTMs is whether
low-altitude airspace should be structured, e.g., with simi-
lar traffic patterns and rules as ground transportation [15].
Regardless of which approach is used, RV can be incor-
porated to alert users of dangerous or undesirable cir-
cumstances. For example, this UTM was developed for
unstructured airspace, so it has more general operating range
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Fig. 1 An overview of the NSF funded cloud-based UTM [34]

Table 1 Selected output signals from the UAS

Signal Description Units

Pos{N,E,D} Relative positional vector (North, East, Downward) from the
home point.

{m, m, m}

Lat, Lon, Alt GPS coordinate positions. {DD, DD, MSL}

Roll, Pitch, Yaw Euler angles of the UAS. {deg, deg, deg}

P, Q, R Euler angle-rates of the UAS. {deg/s, deg/s, deg/s}

Vel{N,E,D} Velocity vector of the UAS. {m/s, m/s, m/s}

Acc{N,E,D} Acceleration vector of the UAS. {m/s2, m/s2, m/s2}

Temp, TempE{1,2} Temperature of the air and motors. C

Pres Atmospheric pressure. hPa

Phase Set of strings corresponding to preset phases of flight. {<undefined>, Test actuators, Stationary, Hover,
Cruise, Go to, Stop at, In flight, Landed}

Subphase Set of strings corresponding to preset subphases of flight. {Ready, Test, Takeoff, Manual, Waypoints,
Home, Landing}

FlightMode Set of strings corresponding to automatic and manual control. {Automatic, Home}

RPM RPM of the main motor. –

Note that the Units of DD stands for Decimal Degrees and MSL stands for Mean Sea Level: a way to measure altitude

specifications, such as those that make sure that all UAS
are within the UTM’s airspace. Conversely, if a structured
airspace was chosen, the structured ruleset can be formally
verified using RV.

4 UTM runtime specifications

We first present the types of interfaces to each UTM sub-
system, and follow with a formal definition of MLTL with
set aggregation and highlight its usefulness within the GCS
and UTM. Then we show how R2U2 can be implemented

into each subsystem, to drive specification elicitation1. We
conclude with a discussion of the techniques used to validate
our specifications.

4.1 UTM Sub-system I/O

UAS The UAS follows a flight plan provided by the GCS
and is responsible for collecting and streaming its telemetry
data to the GCS. Real flight data from OPL’s Vapor 55 UAS
helicopter’s [1] internal log provides the data used for anal-

1 Note that the list presented is not a comprehensive list of all our speci-

fications; the full list can be found at http://temporallogic.org/research/

DETECT2020/.
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ysis and evaluation. The subset we chose is based on which
signals were most useful for performing RV; see Table 1.

For eachUAS in the system, the number of inputs to an on-
board R2U2 implementation remains constant over the entire
run and is predetermined prior to runtime. This makes imple-
mentations of R2U2 equivalent across all UAS, meaning that
the time spent creating specifications for an individual UAS
remains constant. This is assuming all UAS in a system are
the sameclass, e.g., all single-rotor helicopter-styleUASwith
similar parameters.

GCS The GCS has many responsibilities within the UTM
system. It is responsible for: (1) submitting flight plans to
the UTM; (2) directing and receiving telemetry data from
an inflight UAS; (3) pre-processing and transmitting any
telemetry data received from its UAS to the UTM; and (4)
monitoring for any conflict alerts from theUTM. For our case
study, we look only at implementing RV to monitor (1), (2),
and (4). Due to limitations on the way the UTM’s test data
was produced, i.e., the Vapor 55 was only simulated during
the UTM test, and because it would be identical to the UAS’s
R2U2 implementation, we omitted (3) from the GCS’s R2U2
implementation.

A challenging aspect of the GCS is that the flight plan
data must be continuously streamed to R2U2, since flight
plans that are transmitted from the GCS to the UTM are
not saved anywhere in R2U2’s memory (see Table 2). This
made formatting R2U2’s inputs from the GCS challenging;
in particular, the number of waypoints within a GCS’s flight
plan can vary. This led to Equation (1)’s total inputs from a
GCS to R2U2:

NumTelem + NumFP + (NumWPsFP)(NumWP) (1)

where NumTelem is the number of telemetry inputs, NumFP
is the number of inputs from the flight plan, NumWpsFP is
the number of signals associated with each waypoint, and
NumWP is the number of waypoints within the flight plan.
For our specific system, NumTelem = 9, NumFP = 4,
NumWpsFP = 5, andNumWP varies between 3 and 10 way-
points.

This variance in the number of inputs from one GCS to
another led us to develop specifications that validate across
all instances of NumWP. We accomplished this by adjusting
R2U2’s pre-processing layer to iterate across a loop of all
instances of one variable (say, Phase) and determine if at
least one violates a certain property. In essence, this leads
to a mapping of multiple input signals to a single Boolean
atomic for R2U2’s temporal logic monitors. Note that this is
not a first-order logic extension of MLTL; rather, we found
that this modification allowed us to reason over sets of sig-
nals in specifications while maintaining the light-weight and

simple syntax of MLTL. This process, termed MLTL with
set aggregation, is defined further in Sect. 4.2.

UTM Cloud Server Since the UTM is implemented as a
cloud-based, centralized server, it is in charge of consolidated
all transmitted data, comprised of flight plans, telemetry
information, the states the UAS are in, and determining
whether any two UAS will conflict. Like the instances of
R2U2 for the GCS, the number of inputs for the UTM varies:
once with the number of waypoints in a flight plan and again
with the number of UAS. Thus, the total number of inputs
to an instance of R2U2 for the UTM can be calculated by
Equation (2):

NumID(NumTelem + NumFP) +

(NumWPsFP)(

NumI D∑

i=0

NumWP[i]) (2)

whereNumID represents the total number of flight plan IDs in
the UTM andNumWP[i] is the specific number of waypoints
for flight plan i . This can lead to a large number of inputs
for R2U2, e.g., 20 UAS with 4 waypoints each would be 580
inputs.

Similar to the GCS, to get traction on such a large number
of input signals, we utilized MLTL with set aggregation to
develop specifications that iterate across all instances of UAS
within the UTM. Again, we trade expressiveness for perfor-
mance: we retain real-time performance guarantees but only
promiseR2U2will immediately alert theUTMof a violation;
it will not identify the specific UAS responsible.

4.2 MLTL with set aggregation

We express a subset of our GCS and UTM specifications
using a modified version of MLTL, which we term MLTL
with set aggregation. Ultimately, this abstraction allows us
to conjunct (or disjunct) a set of atomic propositions together,
prior to any temporal operator, to allow us to express specifi-
cations across sets of inputs in a simple and efficient manner.
Using set aggregation,while not increasing the expressibility,
preserves contexts for monitor optimizations, while provid-
ing a compact and efficient way to conjunct or disjunct
specification together. While the definition of MLTL with
set aggregation doesn’t change the original semantics and
presents itself as syntactic sugar, we find that there are ben-
efits to the use of set aggregation. The syntax for our MLTL
with set aggregation is as follows:

Definition 3 (MLTLw/SetAggregationSyntax [17,24]) The
syntax of an MLTL formula φ over a set of atomic proposi-
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Table 2 Input and output signals from the GCS to the UTM

Signal GCS I/O Description Units

Telemetry signals

ID O The flight plan ID of the telemetry transmission Int

Time O The time stamp when the GCS transmits the
telemetry to the UTM

UNIX

wp{Lon,Lat,Alt} O The longitude, latitude, and altitude of the waypoint
the UAS is currently flying toward

DD/MSL

Lon, Lat, Alt O The UAS’s measured longitude, latitude, and altitude DD/MSL

Vel O The UAS’s velocity measurement m/s

Ang O The UAS’s heading measurement deg.

Flight Plan Signals

fp_ID I The UTM’s assigned flight plan ID for the approved
flight plan

Int

Status I The UTM’s response to the GCS’s flight plan {Approved, Rejected,
Replaced}

Start O The start time of the flight plan UNIX

End O The estimated end time of the flight plan UNIX

Phase O The type of waypoint {START, STOP, CRUISE,
HOME}

fp{Lon,Lat,Alt} O The specific waypoint’s longitude, latitude, and
altitude.

DD/MSL

Time_Filed O The time stamp when the GCS transmitted the flight
plan to the UTM.

UNIX

En route Conflict Signals

con_ID I The conflicting UAS’s flight plan ID Int

conStart I The estimated start time of the predicted conflict UNIX

conEnd I The estimated UNIX end time of the predicted
conflict

UNIX

con{Lon,Lat,Alt} I The longitude, latitude, and altitude of the predicted
an en route conflict

DD/MSL

Note that the Units of DD stands for Decimal Degrees and MSL stands for Mean Sea Level: a way to measure altitude

tions AP is recursively defined as:

φ::=true | false | p | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 |
∧{A} | ∨ {A} | �Iφ | ♦Iφ | φ1UIφ2 | φ1RIφ2

where p ∈ AP is a Boolean atom (0/1), A ⊆ AP , φ1 and φ2

areMLTL formulas, and I is a closed-bound interval [lb, ub],
where lb ≤ ub. Note that the new syntax, ∧{A} and ∨{A},
represent conjuncting and disjuncting all the propositions
within A into a single proposition, respectively.

Definition 4 (MLTL w/ Set Aggregation Semantics [17,24])
The semantics of MLTL with set aggregation follow exactly
MLTL’s original semantics in Definition 2, with the addition
of two operators:

– π, i |	 ∧{A} iff for all p ∈ A, where A ⊆ AP, p ∈ π [i]
(in other words, ∧p∈A p)

– π, i |	 ∨{A} iff there exists a p ∈ A, where A ⊆
AP, p ∈ π [i] (in other words, ∨p∈A p).

Since ∧{A} and ∨{A} are a conjunction or disjunction of
all elements within the set A, they do not modify MLTL
correctness nor increase its time or space complexity.

One benefit of set aggregation is specification debugging
[26]. Often specifications are complex to read and write; this
approach allows for easier validation of specifications. Set
aggregation allows users to recognize patterns in specifica-
tions and provides a way that is easier to write, use, interpret,
and debug for later verification. For example, we recognized
that for a singular waypoint, if a value is violated, it does not
matter which one, just that the UAS’s flight plan has encoun-
tered an error.Wewere able to group similar signals (latitude,
longitude, altitude, and phase) for waypoints in a flight plan
to determine if one violated a given safety threshold. Essen-
tially, we raised our level of abstraction from reasoning about
an individual signal’s properties to reasoning about a set of
similar signal’s properties.While we recognize that this level
of abstraction removed some potentially useful data (e.g.,
knowing which waypoint in the flight plan violated a given
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safety property), we found that it was often more useful to
know that at least one waypoint violated a safety property.
Instead of creating multiple, complex specifications to con-
junct together, it becomes possible to write only one that is
easier to validate with set aggregation. However, we also rec-
ognize that there are some cases where set aggregation might
not be useful, and defaulting back to conjunction is neces-
sary. An example of this would be the Time_Filed. If a
UAS is sending multiple flight plans, and only one of those
has an incorrect time, knowing which flight plan is invalid
would be necessary, hence why the use of Set Aggregation
would be unnecessary.

Additionally, this approach returns a verdict faster through
savings in computation time. This allows us to return a useful
safety verdict (e.g., that the UAS’s flight plan was bad) faster,
which would then allow the GCS or UTM to take a mitigat-
ing action earlier. MLTL with set aggregation also decreases
memory overhead by cutting down on the amount of inter-
mediate values stored within an R2U2 instance. In essence,
we used a single specification across a set of signals, rather
than one specification per signal. This drastically reduced the
number of specifications encoded in the UTM (on average by
a factor of NumID) and we found modest reductions within
the GCS for specifications involving the UAS’s flight plan.
We recognize that this level of abstraction is not useful for all
specifications; rather, we found that a subset of safety speci-
fications within our distributed system (particularly the GCS
and the UTM) benefit from this approach.

4.3 Coverage of real-world specification types

To help organize our specifications, each one is categorized
into one of six labels: (1) operating range, (2) sensor bounds,
(3) rates of change, (4) control sequences, (5) physical model
relationships, and (6) inter-sensor relationships. These cate-
gories resemble those of [26,35], though we add a level of
granularity to several for ease of organization.

Operating Range Every sensor to, and variable within, a
given system has an expected operating range. Should it fall
below or exceed a given threshold, this may indicate a haz-
ardous system state. For example, the proposed centralized
UTM will cover a predefined airspace. Should a UAS stray
beyond these operating limits of the UTM, an alert will be
sent to the UTMoperator to inform the corresponding UAS’s
GCS that they are reaching or exceeding a safety threshold
of the system.

Sensor Bounds Sensors and variables also have well defined
bounds on the values they can return. For example, a UAS
should never see latitude values that are meaningless (e.g.,
latitude measurements less than −90◦ or greater than 90◦).
These types of specificationsmaybe used in conjunctionwith
Operating Range specifications to help diagnose whether

there is a user error (accidentally operating outside their
airspace) or hardware failure (sensor returning bad data to
the system).

Rates of ChangeAdditionally, sensor’s and variable’s rate of
changemay also be bounded. For example, a UAS will have
some maximum change in velocity between any two teleme-
try transmissions. Should it exceed this value, it may indicate
that theUAS’s transmission rate varied (e.g., a dropped trans-
mission). Additionally, one could monitor to make sure there
is change between two consecutive sensor measurements, or
that the amount of variance between sensor measurements is
not skewed in one direction or another, which could mean
the UAS is under a cyber-attack, such as GPS spoofing.

Control Sequences Because this system follows a rigorous
series of stages, several specificationsmonitor that the system
is adhering to its specified control sequence. For example,
the intended sequence of states for the UTM is to: (1) receive
a flight plan from a GCS, (2) approve or reject the flight
plan, (3) if approved, issue the GCS a corresponding flight
plan ID, and (4) the GCS transmits the telemetry data of the
UAS with the corresponding flight plan ID. Many different
hazardous situations can bemade by removing or rearranging
this intended sequence; thus, monitoring for any out-of-order
sequences can help alert the system or the user to execute a
mitigating action.

Physical Model Relationships In many systems, there exist
physical relationships between one or more combinations
of sensors and actuators when commanding the system. For
example, if a UAS is commanded to accelerate, the motors
should respond accordingly to execute that command. These
types of relationships can detect sensor calibration errors and
ensure that sensors agree about the system’s overall state.

Inter-sensor Relationships To help diagnose failures, some
systems may be able to invoke specifications that use multi-
ple sensors, either of the same or different type, to measure
common values. For example, the relationship between baro-
metric pressure (obtained from an on-board barometer) and
altitude (obtained from the GPS) allows for more than one
way to measure altitude. RV can use these types of specifica-
tions to determine if both sensors agree. If they do not agree,
then polling, or other system health management techniques,
could be used to determine the faulty sensor and switch the
primary source for the UAS altitude measurements.

4.4 Specification validation

Because specification creation is a circular process [26], we
chose to validate our list of RV specifications in a vari-
ety of ways. The first was a Matlab-based approach where
we incorporated logged data for each subsystem into Mat-
lab and validated the ways in which the Boolean atomics
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Table 3 UAS, GCS, and UTM Specifications Investigated

Name Description MLTL specification

UAS_RC_8 The difference between two consecutive pressure Pres readings
cannot exceed a maximum rate of climb MaxPrevPres

¬(�[0,3]¬(Pres_leq_MaxPrevPres∧
Pres_geq_MinPrevPres))

UAS_IS_1 Since the altimeter and the barometer both derive the air pressure, the
error between these two measurements of pressure will be less than
the MaxPresErr and greater than MinPresErr

(PresDiff _lt_MaxPresErr) ∧
(PresDiff _gt_MinPresErr)

GCS_CS_7 The reference latitude LatWP and longitude LonWP will be contained
within the set of waypoints given in the flight plan

wpLonLat_eq_fpLonLat

GCS_PM_2 If a telemetry stream is reporting that the UAS’s heading Ang is
between 90◦ and 180◦, then, if the UAS’s velocity Vel is greater
than 0 m/s, the UAS’s latitude Lat should be decreasing while its
longitude Lon should be increasing

¬(Ang_eq_Quad4∧Vel_gt_Zero)∨
(Lat_leq_PrevLat ∧
Lon_geq_PrevLon)

UTM_OR_11 Every UAS’s position will be bounded within the given airspace All
latitude Lat will be bounded between (41.6000◦,41.6720◦)

�[0,3](Lat_leq_LatUB ∧
Lat_geq_LatLB)

UTM_SB_3 Every UAS’s position will exist on Earth GPS coordinates. All latitude
Lat measurements will be bounded by (−90◦,90◦) degrees

�[0,3](Lat_leq_MaxLatUB ∧
Lat_geq_MinLatLB)

Each specification shown in the above table is a variable name with syntax chosen by its respective equation. The naming convention follows the
trend of a signal_comparison_(signal or constant). The comparisons are less than (lt), less than or equal (leq), equal (eq), not equal(neq), greater
than (gt), and greater than or equal (geq), some of which are demonstrated in the table. Also note that there is an implied � operator outside all of
the specifications due to the stream-based nature of R2U2 runtime observers. That is: R2U2 outputs a stream of verdicts indicating whether each
specification holds starting at every discretized execution time stamp. Formally, ∀i , R2U2 gives a verdict as to whether π, i |	 ϕ in the form of a
stream 〈i, verdict〉. So, even the purely propositional formulas are still asserting that a relationship holds, e.g., throughout a flight, and the temporal
form are asserting something similar; their temporal operators are just preserving activity within a tight temporal window holds throughout the
flight

Fig. 2 A small observation tree from the GCS’s R2U2 implementation. Two sensor values, wpLat and wpLon, are inputs to the signal processing
layer, which pre-processes them into Boolean atomics for the temporal logic observers, where the specifications are encoded

were created. The second was by uploading our MLTL run-
time specifications for each individual subsystem into an
open-source MLTL satisfiability checker [17] to perform
specification debugging via checking each specification, its
negation, and the conjunction of all specifications for satisfia-
bility [29]. The third way these specifications were validated
was by running the pre-recorded data into the R2U2 tool
chain and checking to see if the specification held true over
the system trace. If it did, we injected faults into the pre-
recorded data and monitored R2U2’s output to see if it
correctly detected the faults. Of the list of 124 specifications
we made for the UAS, GCS, and UTM, Table 3 presents six

specifications that we feel encapsulate interesting properties
about each subsystem.

5 Evaluation

The UTM test scenario consists of 20 UAS interacting with
the UTM – OPL’s Vapor 55 hardware-in-the-loop simula-
tion and our 19 physics-based simulated flights – with the
goal of testing the UTM’s conflict detection logic. Of the
20 flight plans, 18 were conflict-free, one was designed to
create a pre-departure conflict, and one deviated from the pre-
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approved flight plan, creating an en-route conflict. During the
42 minute test, the UTM correctly detected and alerted both
GCSs of the en-route conflict, with OPL’s GCS submitting a
new, conflict-free flight plan en-route.

Although we intended to have R2U2 embedded into the
UTMsystem for this test, in practice thiswould have required
enhancements to core functionalities and improving the net-
working capabilities of the UTM. However, all test data was
recorded and put to use offline in refining our specifications
and implementations ofR2U2 into each subsystem.We argue
that since R2U2 has previously been embedded and used in
several successful aerospace applications [12,16,19,24,31],
our offline, real-time simulations of this embedding performs
representatively to an actual implementation. Note we plan
to incorporate R2U2 into the UTM system for the next test.

R2U2 was hosted on a Ubuntu 18.04 LTS operating sys-
tem on an Intel Core i7-4810MQCPUwith a 2.80GHz clock
and 16GB of RAM. Each subsystem of R2U2 was run inde-
pendently, i.e., each subsystemwas run with its own instance
of R2U2 across its own input and no cross-platform commu-
nication was performed. Figure 2 shows an example of how
specifications are encoded into R2U2’s observation trees.

5.1 Analysis of MLTL with set aggregation

Weanalyzed theperformance increase obtained fromabstract-
ing several of our specifications using MLTL with set
aggregation. To demonstrate the potential benefits, we exam-
ined the worst case scenario: suppose there is a set of atomics
A = {a0, a1, . . . an}, where n is an arbitrary integer. Now let
us suppose we perform a simplistic temporal logic formula,
say �[lb,ub] onto either each atomic individually (original
MLTL specifications) or onto the entire set of atomics (MLTL
with set aggregation specification). In the originalMLTLsyn-
tax, each atomic correlates to one temporal logic formula,
i.e., there are n number of temporal formulas of the form
�[lb,ub]ai, where i ≤ n. Contrasting this to the new syntax
for MLTL with set aggregations, there is only one temporal
formula of the form �[lb,ub] ∧n

i=1 ai.
The use of MLTL with set aggregation provides an addi-

tional feature: specification debugging. While not extending
the expressiblity of MLTL, the use of set aggregation eases
readability of specifications which allows for easier val-
idation. An example of this can be provided using the
specification OR_GCS_10. This specification states that the
longitude reference waypoint (wpLon) for any UAS will
be bounded between Lon_LB and Lon_UB, the longitude’s
lower and upper bounds respectively. Writing in MLTL, the
specification is as follows, for a UAS with n waypoints:

[(wpLon1 ≤Lon_UB) ∧ (wpLon1 ≥Lon_LB)]∧
[(wpLon2 ≤Lon_UB) ∧ (wpLon2 ≥Lon_LB)]∧[(wpLon3
≤Lon_UB) ∧ (wpLon3 ≥Lon_LB)]∧ · · · ∧[(wpLonNumWPs

≤Lon_UB) ∧ (wpLonNumWPs ≥Lon_LB)].

For a UAS, with up to 10 waypoints, the specification
rapidly becomes complicated. While correct and possible to
validate, debugging andperforming validating a specification
of this sort is tedious. The use of MLTL with set aggregation
eases reading and provides a simpler representation of the
same formula:

∧NumWPs
i=1 [(wpLoni ≤Lon_UB)∧(wpLoni ≥Lon_LB)].

MLTL with set aggregation was manually implemented
for performance analysis in comparison to MLTL. The GCS
uses set aggregation in 13 of its 30 specifications. Since the
GCS’s specifications that use set aggregation involved the
flight plan, not using set aggregation would have resulted in
17+13(NumWPs) number of specifications, whereNumWPs
varies from 3 to 10 waypoints (but averaged around 4 way-
points). For the UTM, the savings were even greater, since
nearly all of its specifications (40 out of 42) use set aggre-
gation. This allowed the UTM to keep at a constant 42
specifications, compared to the 2 + 40(NumUAS) number
of specifications it would have had without set aggregation.

The reduction of the number of specifications correlates
to a reduced memory usage as well. While part of this was a
result of reducing theoverall number of specifications by con-
juncting specifications, which can be done in MLTL without
set aggregation, it was also due to implementing the con-
junction or disjunction of sets in the signal processing layer.
Since each atomic is a bit and a time stamp, by decreasing the
number of atomics, we decreased memory usage. We found
that in the best case, there was a reduction of 42.9% in mem-
ory, while the worst case gave a reduction of 42.1% savings.
These savings transfer to performance as well. The atomic
conversions for these testswere implementedmanually using
Matlab, with varying parameters. Using a range of one to all
of the UTM Operating Range Specifications, and changing
the number of specification used, and which were used per
run, we found that the reduction in runtime decreased, on
average by 40%.

While beyond the scope of this paper, potential implemen-
tations are planned for the future and theorized to maintain
or improve performance.

5.2 Specification evaluation

Operating Range As seen from Fig. 3, the UTM’s R2U2
monitors and reports if the operating range bounds are satis-
fied for all of UAS’s latitude measurements. As the original
test data was fault-free, we injected a fault, which revealed
a sudden spike in R2U2’s output during the injected fault.
This corresponds to a dropped transmission in the original
data. Thus, we refine our specification to include an overarch-
ing �[0,3] operator, which acts as a sliding window temporal
filter, to suppress such output bouncing.
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Fig. 3 Two instances of the UTM’s R2U2 monitoring: a modified run
a where one UAS (purple) temporarily exceeds the operating range
bounds, and an unmodified run b where all UAS lie within the operat-
ing range (dashed lines). Both fault-injected runs show R2U2 identifies
the corresponding violation of the specification; however, the output

of the purely Boolean formula c bounces due to a missed telemetry
transmission. To avoid a false positive, due to missing data, we add a
temporal logic filter d that monitors for multiple subsequent nominal
data sequences

Fig. 4 Like Fig. 3, the top graphs show modified (a) and unmodified (b) input traces. Similarly, dropped telemetry transmissions cause output
bouncing (c), so a �[0,3] filter is applied (d)
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Fig. 5 Two instances of the UAS’s R2U2 monitoring: (a) a modified
trace where we injected a shift in the air pressure’s rate of change, and
(b) an unmodified trace where a few anomalies exceed the pressure rate
of change bounds (dashed lines). Both outputs of the fault-injected run

from R2U2 are shown; however, the output of the original formula (c)
bounces due to noisy input jumping backwithin themargins. To remove
this bouncing, we added another�[0,3] filter (d) to keep the current state
until all outliers are filtered and the state has unquestionably changed

Sensor Bounds Similar to Figs. 3 and 4 shows the UTM’s
R2U2 monitoring and reporting if any of the UAS’s lati-
tude measurements exceed the sensor bound threshold of
(−90◦, 90◦). Similarly, the original data was fault free, so
we injected a fault into one of the UAS’s latitude measure-
ments. Again, testing revealed transmission losses, so we
added a �[0,3] filter to suppress any false positives triggered
by missing data.

Rates of Change The pressure recorded by a UAS’s on-board
barometer changes as it ascends and descends. Thus, we
developed a specification to monitor change in pressure: the
difference between two consecutive pressure readings are
limited to ±0.4 hPa (derived from the maximum rates of
climb and descent [21]). Unlike our other specifications, Fig.
5 shows that we needed to include a conjunction of two�[0,3]
filters to remove all output bouncing: one filters outlying vio-
lating verdicts and one filters outlying satisfying verdicts.

Control Sequence The UTM’s test scenario included one
UAS deviating from its pre-approved flight plan. Figure 7
shows R2U2 correctly detecting this real-world deviation in
real time.

Inter-sensor Relationship The difference between the baro-
meter’s and GPS’s pressure should be bounded within
acceptable error. A comparison of the two sensors can help
diagnose sensor failures (see [21] for more details). For
example, Fig. 6 shows a side-by-side comparison of two pres-
sure traces: an unmodified and amodified versionwith a fault
injected from t = 1500 to t = 1750.

Physical Model Relationship As shown in Fig. 8, when a
UAS’s heading is between 90◦ and 180◦ and its velocity is
non-zero, then the UAS’s latitude should be decreasing while
its longitude is increasing.

5.3 Lessons learned

Manyof our specifications are rather simplistic, e.g.,�[0,3](ϕ1∧
ϕ2); however, their simplicity allows for easy validation and
verification. They are easy to validate through discussion
with systemdesigners.Additionally,weused temporal filters,
e.g., the �[0,3] sliding window filter, extensively to mitigate
false-positives. As false-positives can cause mistrust of the
RV monitor, we built our specifications to err on the side
of missing a fault. As seen in Sect. 5, if R2U2 sent a fault
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Fig. 6 Two instances of the UAS’s R2U2 monitoring: an unmodified
run (a) where the pressure from the barometer remains within the error
margins of the GPS’s calculated atmospheric pressure (dashed lines),
and a modified run (b) where the same data was injected with a fault

by subtracting 100hPa from the barometer’s atmospheric pressure read-
ing. R2U2’s output (c) acknowledges the error-free trace of (a), and (d)
shows that R2U2 detects the violation from (b)

Fig. 7 The latitude (top) and longitude (middle) traces for an adversarial
UAS, showing that the GCS is commanding it to a different waypoint
(red, dashed line) instead of one from its approved flight plan (green,
dotted line). Corresponding to the violation of CS_GCS_7 (Table 3),
R2U2’s output (bottom) shows it successfully detects this real-world
fault

Fig. 8 Single instance of R2U2 on a simulated UAS showing the
latitude, longitude, heading, and velocity. With assumptions of a rela-
tionship between heading and trajectory and theUASoperating inNorth
America, then a relationship between velocity, heading, and position can
be verified
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alert, the fault was clear for the human operators receiving
the alert. Many of our specifications encapsulate intuitive
bounds and relationships for sensor values and variables that
humans implicitly assume about a given system, e.g., lati-
tude coordinates are bounded between (−90◦, 90◦) and that
events cannot end before they start. These “common-sense”
specifications are often overlooked, yet they catch real faults,
e.g., from variable overflow and underflow, sensor or wiring
failures, and excessive noise. Our coverage categorization
for specifications allowed us to enumerate many such san-
ity checks about the UTM system, which helped us achieve a
reasonable covering set of specifications for the UTM’s three
sub-systems. In practice, this lead to R2U2 identifying a real-
life fault where a data-translation error caused the UTM to
register flight plans that ended before they started. Such an
error would be obvious to human controllers but automated
systems require RV to flag this impossibility. We also find
that the use of set aggregation, while not providing MLTL
with more expressive syntax, allows for easier debugging
of specifications due to readability. MLTL with set aggrega-
tion maintains contexts to be used in monitor optimizations,
while potentially maintaining the same performance. Future
work is aimed toward creating automated tools for specifi-
cation elicitation and implementation of set aggregation into
R2U2.

6 Conclusion

Before UAS can integrate into the NAS, we need to estab-
lish a provably safe, intelligent, and automated UTM system.
To help facilitate this, we have integrated the state-of-the-
art runtime verification tool R2U2 across the three different
layers of an actual UTM implementation: on-board the indi-
vidual UAS, in conjunction with each operator’s GCS, and
embedded into a centralized, cloud-based UTM server. By
validating and releasing over 100 runtime MLTL specifica-
tions, two sets of recorded traces from test flights of a real-life
UTM implementation, and the results of checking those for-
mulas, we contribute a large benchmark suite. This suite is
useful for verification of the algorithms and implementations
of future RV tools, providing both nominal and faulty traces
and realistic sensor noise and outlier readings that challenge
RV engines. Additionally, we exemplify the real-world chal-
lenges of implementing RV into a centralized, high-traffic
UTM. We demonstrate real-time performance of our newly
developedMLTLwith set aggregation, where we conjunct or
disjunct sets of atomic propositions to create a higher level
of specification abstraction. These specifications verify that
a property holds for all UAS or at least one member of a
set, which allows for a system to respond to a failed verdict
faster. For our implementation on a GCS, 13 out of 30 spec-
ifications use set aggregation; for the UTM, 40 out of 42 use

set aggregation. This extension of MLTL is part of the first
step of distributed system healthmanagement: a systemmust
know something is wrong (i.e., at least one node is violating
a safety specification) so that it can alert an operator and/or
perform some mitigating action. When refining our specifi-
cation set, we found sensor noise and outliers triggered false
positives and that a simple �[0,3] around each critical sen-
sor check eliminated these while only slightly delaying the
trigger of actual faults. Of our 124 specifications, two-thirds
contain this construct. This modification can be automati-
cally inserted into specifications for real-life systems where
false positives cannot be tolerated. Our specification patterns
and efficient encoding into R2U2 provide a basis for future
work in more automated specification elicitation and embed-
ding into distributed systems. Though we verified a short (42
minute) relatively small real-life system (26, 33-64, and 634
sensor inputs for the UAS, GCS, and UTM, respectively) we
still found it hard to manually write a sufficiently covering
set of specifications to catch faults in this distributed system,
like that flight plan end times cannot proceed flight plan start
times. To ensure we did not miss covering unstated assump-
tions, we used coverage metrics to brainstorm our list of 124
specifications: variable coverage (every variable appears in
at least one specification) and pattern coverage (specifica-
tions follow each pattern from [26]). Our experience informs
an on-going project to enable more automated specification
elicitation.
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